Let (xn)n≥1 and (yn)n≥1 be bounded sequence. Prove thatlim infn→∞ (xn + yn) ≥ lim infn→∞ xn + lim infn→∞ yn

Question

Let (xn)n≥1 and (yn)n≥1 be bounded sequence. Prove thatlim infn→∞ (xn + yn) ≥ lim infn→∞ xn + lim infn→∞ yn
🧐 Not the exact question you are looking for?Go ask a question

Solution 1

Sure, here is the proof:

Step 1: Definitions First, let's define what we mean by lim inf. The limit inferior (or infimum limit) of a sequence (xn) is the greatest lower bound of the set of all limit points of the sequence. In other words, it's the largest value that we can guarantee the sequence wi Knowee AI StudyGPT is a powerful AI-powered study tool designed to help you to solve study prob

Knowee AI StudyGPT is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI StudyGPT is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI StudyGPT is a powerful AI-powered study tool designed to help you to solve study problem.
Knowee AI StudyGPT is a powerful AI-powered study tool designed to help you to solv

This problem has been solved

Similar Questions

Let (xn)n≥1 and (yn)n≥1 be bounded sequence. Prove thatlim infn→∞ (xn + yn) ≥ lim infn→∞ xn + lim infn→∞ yn

Let (xn) be a bounded sequence in R. Show that there exist subsequences (xnk ) and(xmk ) of (xn) such thatlimk→∞ xnk = lim sup xn and limk→∞ xmk = lim inf xn.

Construct two divergent sequences (xn)n≥1 and (yn)n≥1 such that (xn + yn)n≥1 converges

Define (xn)n≥1 by x1 := 0 and xn+1 := (xn + 3)/4 for n ≥ 1. Prove that the sequence (xn)n≥1 isconvergent and calculate the limit limn→∞ xn

Construct two divergent sequences (xn)n≥1 and (yn)n≥1 such that (xn + yn)n≥1converges

1/3