Knowee
Questions
Features
Study Tools

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), find its derivative with respect to xQuestion 7Answera.๐‘๐‘œ๐‘ โก(3+2๐‘ฆ)b.3๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)c.๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)d.3๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)

Question

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), find its derivative with respect to x

Question 7

Answer

  • a. ๐‘๐‘œ๐‘ โก(3+2๐‘ฆ)
  • b. 3๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)
  • c. ๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)
  • d. 3๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)
๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the derivative of the function z=sinโก(3x+2y) z = \sin(3x + 2y) with respect to x x . This involves applying the chain rule.

2. Relevant Concepts

The chain rule states that if you have a composite function f(g(x)) f(g(x)) , the derivative is given by: dfdx=dfdgโ‹…dgdx \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} For z=sinโก(u) z = \sin(u) where u=3x+2y u = 3x + 2y , we will use:

  • ddxsinโก(u)=cosโก(u)โ‹…dudx \frac{d}{dx} \sin(u) = \cos(u) \cdot \frac{du}{dx}

3. Analysis and Detail

  1. Identify u u : u=3x+2y u = 3x + 2y

  2. Compute dudx \frac{du}{dx} : dudx=ddx(3x+2y)=3 \frac{du}{dx} = \frac{d}{dx}(3x + 2y) = 3 (Note that y y is treated as a constant with respect to x x )

  3. Apply the chain rule: dzdx=cosโก(u)โ‹…dudx=cosโก(3x+2y)โ‹…3 \frac{dz}{dx} = \cos(u) \cdot \frac{du}{dx} = \cos(3x + 2y) \cdot 3

4. Verify and Summarize

The derivative of z z with respect to x x simplifies to: dzdx=3cosโก(3x+2y) \frac{dz}{dx} = 3\cos(3x + 2y) This corresponds to option b from the provided choices.

Final Answer

dzdx=3cosโก(3x+2y)(Optionย b) \frac{dz}{dx} = 3\cos(3x + 2y) \quad \text{(Option b)}

This problem has been solved

Similar Questions

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), find its derivative with respect to xQuestion 7Answera.๐‘๐‘œ๐‘ โก(3+2๐‘ฆ)b.3๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)c.๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)d.3๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)

Determine the derivative of ๐‘ฆ๐‘ฅ=๐‘ฅ2 at the point xQuestion 8Answera.2๐‘ฅb.๐‘ฅ2c.2d.2๐‘ฅ2

Obtain the derivative of ๐‘ง=(2๐‘ฅ-๐‘ฆ)(๐‘ฅ+3๐‘ฆ) with respect to yQuestion 10Answera.5๐‘ฅ-6๐‘ฆb.(2๐‘ฅ-1)(๐‘ฅ+3)c.4๐‘ฅ+5๐‘ฆd.(2-๐‘ฆ)(1+3๐‘ฆ)

If ๐‘ฆ=๐‘ ๐‘–๐‘›๐‘ฅ, determine the fourth derivative of y with respect to xQuestion 4Answera.๐‘ฆ๐‘–๐‘ฃ=๐‘ ๐‘–๐‘›๐‘ฅb.๐‘ฆ๐‘–๐‘ฃ=-๐‘๐‘œ๐‘ ๐‘ฅc.๐‘ฆ๐‘–๐‘ฃ=๐‘๐‘œ๐‘ ๐‘ฅd.๐‘ฆ๐‘–๐‘ฃ=-๐‘ ๐‘–๐‘›๐‘ฅ

๐‘”(๐‘ก)={2๐‘ก2+2๐‘กโˆ’24๐‘กโˆ’3๐‘–๐‘“ย ๐‘กโ‰ 3๐‘๐‘–๐‘“ย ๐‘ก=3g(t)={ tโˆ’32t 2 +2tโˆ’24โ€‹ bโ€‹ ifย tโ‰ 3ifย t=3โ€‹ A.14B.3C.7D.None of theseE.0

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.