Knowee
Questions
Features
Study Tools

Obtain the derivative of ๐‘ง=(2๐‘ฅ-๐‘ฆ)(๐‘ฅ+3๐‘ฆ) with respect to yQuestion 10Answera.5๐‘ฅ-6๐‘ฆb.(2๐‘ฅ-1)(๐‘ฅ+3)c.4๐‘ฅ+5๐‘ฆd.(2-๐‘ฆ)(1+3๐‘ฆ)

Question

Obtain the derivative of ๐‘ง=(2๐‘ฅ-๐‘ฆ)(๐‘ฅ+3๐‘ฆ) with respect to y

Question 10

Answer

a. 0.5๐‘ฅ - 6๐‘ฆ
b. (2๐‘ฅ - 1)(๐‘ฅ + 3)
c. 4๐‘ฅ + 5๐‘ฆ
d. (2 - ๐‘ฆ)(1 + 3๐‘ฆ)

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

Step 1: Break Down the Problem

We need to find the derivative of the function z=(2xโˆ’y)(x+3y) z = (2x - y)(x + 3y) with respect to y y . This will involve using the product rule for differentiation, which states that if you have a function u(y)v(y) u(y)v(y) , the derivative is given by:

ddy(uv)=uโ€ฒv+uvโ€ฒ \frac{d}{dy}(uv) = u'v + uv'

Step 2: Relevant Concepts

  1. Let u=2xโˆ’y u = 2x - y and v=x+3y v = x + 3y .
  2. Then, we need to find the derivatives uโ€ฒ u' and vโ€ฒ v' :
    • uโ€ฒ=ddy(2xโˆ’y)=โˆ’1 u' = \frac{d}{dy}(2x - y) = -1
    • vโ€ฒ=ddy(x+3y)=3 v' = \frac{d}{dy}(x + 3y) = 3

Step 3: Analysis and Detail

Now applying the product rule:

dzdy=uโ€ฒv+uvโ€ฒ \frac{dz}{dy} = u'v + uv' Substituting in the derivatives and the functions:

dzdy=(โˆ’1)(x+3y)+(2xโˆ’y)(3) \frac{dz}{dy} = (-1)(x + 3y) + (2x - y)(3)

Calculating each term separately:

  1. The first term is: โˆ’1โ‹…(x+3y)=โˆ’xโˆ’3y-1 \cdot (x + 3y) = -x - 3y

  2. The second term is: (2xโˆ’y)(3)=6xโˆ’3y(2x - y)(3) = 6x - 3y

Combining both terms:

dzdy=(โˆ’xโˆ’3y)+(6xโˆ’3y) \frac{dz}{dy} = (-x - 3y) + (6x - 3y) This simplifies to:

dzdy=5xโˆ’6y \frac{dz}{dy} = 5x - 6y

Step 4: Verify and Summarize

The derivative dzdy \frac{dz}{dy} is calculated correctly as 5xโˆ’6y 5x - 6y .

Final Answer

The final result is:

dzdy=5xโˆ’6y \frac{dz}{dy} = 5x - 6y

So the correct option is: a. 5x - 6y

This problem has been solved

Similar Questions

Obtain the derivative of ๐‘ง=(2๐‘ฅ-๐‘ฆ)(๐‘ฅ+3๐‘ฆ) with respect to yQuestion 10Answera.5๐‘ฅ-6๐‘ฆb.(2๐‘ฅ-1)(๐‘ฅ+3)c.4๐‘ฅ+5๐‘ฆd.(2-๐‘ฆ)(1+3๐‘ฆ)

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), find its derivative with respect to xQuestion 7Answera.๐‘๐‘œ๐‘ โก(3+2๐‘ฆ)b.3๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)c.๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)d.3๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)

Determine the derivative of ๐‘ฆ๐‘ฅ=๐‘ฅ2 at the point xQuestion 8Answera.2๐‘ฅb.๐‘ฅ2c.2d.2๐‘ฅ2

If ๐‘ฆ=๐‘ ๐‘–๐‘›๐‘ฅ, determine the fourth derivative of y with respect to xQuestion 4Answera.๐‘ฆ๐‘–๐‘ฃ=๐‘ ๐‘–๐‘›๐‘ฅb.๐‘ฆ๐‘–๐‘ฃ=-๐‘๐‘œ๐‘ ๐‘ฅc.๐‘ฆ๐‘–๐‘ฃ=๐‘๐‘œ๐‘ ๐‘ฅd.๐‘ฆ๐‘–๐‘ฃ=-๐‘ ๐‘–๐‘›๐‘ฅ

๐‘”(๐‘ก)={2๐‘ก2+2๐‘กโˆ’24๐‘กโˆ’3๐‘–๐‘“ย ๐‘กโ‰ 3๐‘๐‘–๐‘“ย ๐‘ก=3g(t)={ tโˆ’32t 2 +2tโˆ’24โ€‹ bโ€‹ ifย tโ‰ 3ifย t=3โ€‹ A.14B.3C.7D.None of theseE.0

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.