Knowee
Questions
Features
Study Tools

If ๐‘ฆ=๐‘ ๐‘–๐‘›๐‘ฅ, determine the fourth derivative of y with respect to xQuestion 4Answera.๐‘ฆ๐‘–๐‘ฃ=๐‘ ๐‘–๐‘›๐‘ฅb.๐‘ฆ๐‘–๐‘ฃ=-๐‘๐‘œ๐‘ ๐‘ฅc.๐‘ฆ๐‘–๐‘ฃ=๐‘๐‘œ๐‘ ๐‘ฅd.๐‘ฆ๐‘–๐‘ฃ=-๐‘ ๐‘–๐‘›๐‘ฅ

Question

If ๐‘ฆ=๐‘ ๐‘–๐‘›๐‘ฅ, determine the fourth derivative of y with respect to x

Question 4

Answer

a. ๐‘ฆโฝโดโพ = ๐‘ ๐‘–๐‘›๐‘ฅ
b. ๐‘ฆโฝโดโพ = -๐‘๐‘œ๐‘ ๐‘ฅ
c. ๐‘ฆโฝโดโพ = ๐‘๐‘œ๐‘ ๐‘ฅ
d. ๐‘ฆโฝโดโพ = -๐‘ ๐‘–๐‘›๐‘ฅ

๐Ÿง Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to find the fourth derivative of the function y=sinโกx y = \sin x with respect to x x .

2. Relevant Concepts

To find the derivatives of y=sinโกx y = \sin x :

  • First derivative: yโ€ฒ=dydx y' = \frac{dy}{dx}
  • Second derivative: yโ€ฒโ€ฒ=d2ydx2 y'' = \frac{d^2y}{dx^2}
  • Third derivative: yโ€ฒโ€ฒโ€ฒ=d3ydx3 y''' = \frac{d^3y}{dx^3}
  • Fourth derivative: y(4)=d4ydx4 y^{(4)} = \frac{d^4y}{dx^4}

3. Analysis and Detail

  1. First Derivative: yโ€ฒ=ddx(sinโกx)=cosโกx y' = \frac{d}{dx}(\sin x) = \cos x

  2. Second Derivative: yโ€ฒโ€ฒ=ddx(cosโกx)=โˆ’sinโกx y'' = \frac{d}{dx}(\cos x) = -\sin x

  3. Third Derivative: yโ€ฒโ€ฒโ€ฒ=ddx(โˆ’sinโกx)=โˆ’cosโกx y''' = \frac{d}{dx}(-\sin x) = -\cos x

  4. Fourth Derivative: y(4)=ddx(โˆ’cosโกx)=sinโกx y^{(4)} = \frac{d}{dx}(-\cos x) = \sin x

4. Verify and Summarize

  • The first derivative is cosโกx \cos x .
  • The second derivative is โˆ’sinโกx -\sin x .
  • The third derivative is โˆ’cosโกx -\cos x .
  • The fourth derivative returns to sinโกx \sin x .

Final Answer

The fourth derivative of y=sinโกx y = \sin x with respect to x x is: y(4)=sinโกx y^{(4)} = \sin x

This aligns with option (a), which states that y(4)=sinโกx y^{(4)} = \sin x .

This problem has been solved

Similar Questions

If ๐‘ฆ=๐‘ ๐‘–๐‘›๐‘ฅ, determine the fourth derivative of y with respect to xQuestion 4Answera.๐‘ฆ๐‘–๐‘ฃ=๐‘ ๐‘–๐‘›๐‘ฅb.๐‘ฆ๐‘–๐‘ฃ=-๐‘๐‘œ๐‘ ๐‘ฅc.๐‘ฆ๐‘–๐‘ฃ=๐‘๐‘œ๐‘ ๐‘ฅd.๐‘ฆ๐‘–๐‘ฃ=-๐‘ ๐‘–๐‘›๐‘ฅ

Determine the derivative of ๐‘ฆ๐‘ฅ=๐‘ฅ2 at the point xQuestion 8Answera.2๐‘ฅb.๐‘ฅ2c.2d.2๐‘ฅ2

If ๐‘ง=๐‘ ๐‘–๐‘›โก(3๐‘ฅ+2๐‘ฆ), find its derivative with respect to xQuestion 7Answera.๐‘๐‘œ๐‘ โก(3+2๐‘ฆ)b.3๐‘๐‘œ๐‘ โก(3๐‘ฅ+2๐‘ฆ)c.๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)d.3๐‘ ๐‘–๐‘›โก(3+2๐‘ฆ)

Obtain the derivative of ๐‘ง=(2๐‘ฅ-๐‘ฆ)(๐‘ฅ+3๐‘ฆ) with respect to yQuestion 10Answera.5๐‘ฅ-6๐‘ฆb.(2๐‘ฅ-1)(๐‘ฅ+3)c.4๐‘ฅ+5๐‘ฆd.(2-๐‘ฆ)(1+3๐‘ฆ)

Instructions: Assume that y๐‘ฆ varies inversely as x๐‘ฅ.ย If y=8๐‘ฆ=8 when x=โˆ’2๐‘ฅ=โˆ’2, find y๐‘ฆย when x=4๐‘ฅ=4.y=๐‘ฆ= Answer 1 Question 22

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.