Knowee
Questions
Features
Study Tools

Hỏi hàm số y=13x3−x2+x𝑦=13𝑥3−𝑥2+𝑥 đồng biến trên khoảng nào ? A. (−∞;+∞)(−∞;+∞). B. (−∞;1)(−∞;1) và (1;+∞)(1;+∞). C. (−∞;1)(−∞;1). D. (1;+∞)(1;+∞).

Question

Hỏi hàm số y=13x3x2+x y=13x^3−x^2+x đồng biến trên khoảng nào ?

A. (;+)(;+)(-\infty;+\infty)(-\infty;+\infty).
B. (;1)(;1)(-\infty;1)(-\infty;1)(1;+)(1;+)(1;+\infty)(1;+\infty).
C. (;1)(;1)(-\infty;1)(-\infty;1).
D. (1;+)(1;+)(1;+\infty)(1;+\infty).

🧐 Not the exact question you are looking for?Go ask a question

Solution

1. Break Down the Problem

We need to determine the intervals on which the function y=13x3x2+x y = 13x^3 - x^2 + x is increasing. This involves finding the derivative of the function and analyzing its sign.

2. Relevant Concepts

To find where the function is increasing, we need to compute its first derivative y y' and analyze where y>0 y' > 0 .

3. Analysis and Detail

Step 1: Compute the derivative

The function is given as: y=13x3x2+x y = 13x^3 - x^2 + x

The derivative of y y with respect to x x is: y=ddx(13x3x2+x)=39x22x+1 y' = \frac{d}{dx}(13x^3 - x^2 + x) = 39x^2 - 2x + 1

Step 2: Determine the critical points

To find the critical points, we set the derivative equal to zero: 39x22x+1=0 39x^2 - 2x + 1 = 0

Applying the quadratic formula x=b±b24ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} : Where a=39 a = 39 , b=2 b = -2 , and c=1 c = 1 : x=(2)±(2)24391239 x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 39 \cdot 1}}{2 \cdot 39} x=2±415678 x = \frac{2 \pm \sqrt{4 - 156}}{78} x=2±15278 x = \frac{2 \pm \sqrt{-152}}{78}

Since the discriminant is negative, there are no real roots. Therefore, the derivative y y' does not change sign and must be evaluated to determine if it's positive or negative.

Step 3: Analyze the sign of the derivative

Evaluate y y' :

For x=0 x = 0 : y(0)=39(0)22(0)+1=1>0 y'(0) = 39(0)^2 - 2(0) + 1 = 1 > 0

Since y>0 y' > 0 throughout the entire real line, the function y=13x3x2+x y = 13x^3 - x^2 + x is increasing everywhere.

4. Verify and Summarize

We verified the calculations, and since there are no critical points where y=0 y' = 0 or y<0 y' < 0 , we conclude the function is strictly increasing over all real numbers.

Final Answer

The function is increasing on the interval (,+) (-\infty, +\infty) . Thus, the answer is A. (−∞; +∞).

This problem has been solved

Similar Questions

Hỏi hàm số y=13x3−x2+x𝑦=13𝑥3−𝑥2+𝑥 đồng biến trên khoảng nào ? A. (−∞;+∞)(−∞;+∞). B. (−∞;1)(−∞;1) và (1;+∞)(1;+∞). C. (−∞;1)(−∞;1). D. (1;+∞)(1;+∞).

Đồ thị hàm số y=1x+1𝑦=1𝑥+1 không nghịch biến trong các khoảng nào trong các khoảng sau? A. (−1;1)(−1;1) B. (2;4)(2;4) C. (−3;−1)(−3;−1) D. (2;3)(2;3)

𝑔(𝑡)={2𝑡2+2𝑡−24𝑡−3𝑖𝑓 𝑡≠3𝑏𝑖𝑓 𝑡=3g(t)={ t−32t 2 +2t−24​ b​ if t≠3if t=3​ A.14B.3C.7D.None of theseE.0

我们有线性回归模型y = Xβ + e,其中y,X,β和e分别是响应向量,设计矩阵,参数向量和模型误差项。参数估计器是ˆβ = (XT X)−1XT y,拟合值向量可以写成ˆy = Hy,其中H是帽子矩阵。请证明yT y = ˆyT ˆy + ˆeT ˆe。

我们的垄断HPW的总成本函数为 TC = 300 + 10Q + Q 2 /2 (如问题 6,教程 9),其中 Q 是HPW的访问者数量。HPW访问的需求曲线由 P = 259 - 2Qd 给出,其中 P 是市场价格。我们的(单一价格)垄断者HPW收取的利润最大化价格是多少?   [将答案四舍五入到小数点后一位]

1/1

Upgrade your grade with Knowee

Get personalized homework help. Review tough concepts in more detail, or go deeper into your topic by exploring other relevant questions.